Effects of Electrode Position on Spatiotemporal Auditory Nerve Fiber Responses: A 3D Computational Model Study

نویسندگان

  • Soojin Kang
  • Tanmoy Chwodhury
  • Il Joon Moon
  • Sung Hwa Hong
  • Hyejin Yang
  • Jong-Ho Won
  • Jihwan Woo
چکیده

A cochlear implant (CI) is an auditory prosthesis that enables hearing by providing electrical stimuli through an electrode array. It has been previously established that the electrode position can influence CI performance. Thus, electrode position should be considered in order to achieve better CI results. This paper describes how the electrode position influences the auditory nerve fiber (ANF) response to either a single pulse or low- (250 pulses/s) and high-rate (5,000 pulses/s) pulse-trains using a computational model. The field potential in the cochlea was calculated using a three-dimensional finite-element model, and the ANF response was simulated using a biophysical ANF model. The effects were evaluated in terms of the dynamic range, stochasticity, and spike excitation pattern. The relative spread, threshold, jitter, and initiated node were analyzed for single-pulse response; and the dynamic range, threshold, initiated node, and interspike interval were analyzed for pulse-train stimuli responses. Electrode position was found to significantly affect the spatiotemporal pattern of the ANF response, and this effect was significantly dependent on the stimulus rate. We believe that these modeling results can provide guidance regarding perimodiolar and lateral insertion of CIs in clinical settings and help understand CI performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Slope of Amplitude Growth Function Changes of the Electrically Evoked Action Potential in Three Months after Receiving the Device in Children with Cochlear Implant

Objective: In neural response telemetry, intracochlear electrodes stimulate the auditory nerve and record the neural responses. The electrical stimulation is sent to the auditory nerve by an electrode and the resulted response, called electrically evoked compound action potential, is recorded by an adjacent electrode. The most important clinical applications of this test are evaluation and moni...

متن کامل

A 3D Computational Model of Transcutaneous Electrical Nerve Stimulation for Estimating Aβ Tactile Nerve Fiber Excitability

Tactile sensory feedback plays an important role in our daily life. Transcutaneous electrical nerve stimulation (TENS) is widely accepted to produce artificial tactile sensation. To explore the underlying mechanism of tactile sensation under TENS, this paper presented a novel 3D TENS computational model including an active Aβ tactile nerve fiber (TNF) model and a forearm finite element model wi...

متن کامل

Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery.

This paper presents a computational model to simulate normal and impaired auditory-nerve (AN) fiber responses in cats. The model responses match physiological data over a wider dynamic range than previous auditory models. This is achieved by providing two modes of basilar membrane excitation to the inner hair cell (IHC) rather than one. The two modes are generated by two parallel filters, compo...

متن کامل

Evaluating Auditory Performance Limits: I. One-Parameter Discrimination Using a Computational Model for the Auditory Nerve

A method for calculating psychophysical performance limits based on stochastic neural responses is introduced and compared to previous analytical methods for evaluating auditory discrimination of tone frequency and level. The method uses signal detection theory and a computational model for a population of auditory nerve (AN) fiber responses. The use of computational models allows predictions t...

متن کامل

Effects of Microelectrode Array Configu- Ration and Position on the Threshold in Electrical Extracellular Stimulation of Single Nerve Fiber: a Modeling Study

A transient finite-element model has been presented to simulate extracellular potential stimulating in a neural tissue by a nonplanar microelectrode array (MEA). This model allows simulating the extracellular potential and transmembrane voltage by means of a single transient computation performed within single finite element (FE) software. The differential effects of the configuration and posit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015